Electron interactions and scaling relations for optical excitations in carbon nanotubes.
نویسندگان
چکیده
Recent fluorescence spectroscopy experiments on single wall carbon nanotubes reveal substantial deviations of observed absorption and emission energies from predictions of noninteracting models of the electronic structure. Nonetheless, the data for nearly armchair nanotubes obey a nonlinear scaling relation as a function of the tube radius R. We show that these effects can be understood in a theory of large radius tubes, derived from the theory of two dimensional graphene where the Coulomb interaction leads to a logarithmic correction to the electronic self-energy and marginal Fermi liquid behavior. Interactions on length scales larger than the tube circumference lead to strong self-energy and excitonic effects that compete and nearly cancel so that the observed optical transitions are dominated by the graphene self-energy effects.
منابع مشابه
Effects of Structure and Partially Localization of the π Electron Clouds of Single-Walled Carbon Nanotubes on the Cation-π Interactions
A C102H30 graphene sheet has been rolled up to construct Single-Walled Carbon NanoTube Fragments (SWCNTFs) as parts of armchair carbon nanotubes by computational quantum chemistry methods. Non-covalent cation-π interactions of the Na+ cation on the central rings of SWCNTFs have investigated. The binding energies of the Na+-SWCNTF complexes versus ...
متن کاملMany body effects in carbon nanotube fluorescence spectroscopy
Two dimensional fluorescence spectroscopy on suspensions of carbon nanotubes probes the electronic excitations of carbon nanotubes with unprecedented resolution and reveals systematic deviations from the predictions of conventional one electron theories. We address these problems by formulating a theory of the scaling optical excitation energies with band index, tube radius and chiral angle. Th...
متن کاملElectronic excitations of double-walled armchair carbon nanotubes
The low-frequency electronic excitations in double-walled armchair carbon nanotubes are studied within the random-phase approximation. The intertube atomic overlaps significantly affect the low-energy bands and thus enrich the low-frequency single-particle excitations and collective excitations. They induce more plasmon modes, reduce the plasmon strength, and change acoustic plasmons into optic...
متن کاملInfrared spectra of individual semiconducting single-walled carbon nanotubes: Testing the scaling of transition energies for large diameter nanotubes
We have measured the low-energy excitonic transitions of chiral assigned individual large-diameter semiconducting single-walled nanotubes using a high-resolution Fourier transform photoconductivity technique. When photoconductivity is complemented by Rayleigh scattering spectroscopy, as many as five optical transitions can be identified on the same individual nanotube over an energy range of 0....
متن کاملScaling of exciton binding energy with external dielectric function in carbon nanotubes
We develop a scaling relationship between the exciton binding energy and the external dielectric function in carbon nanotubes. We show that the electron–electron and electron–hole interaction energies are strongly affected by screening yet largely counteract each other, resulting in much smaller changes in the optical transition energy. The model indicates that the relevant particle interaction...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 93 19 شماره
صفحات -
تاریخ انتشار 2004